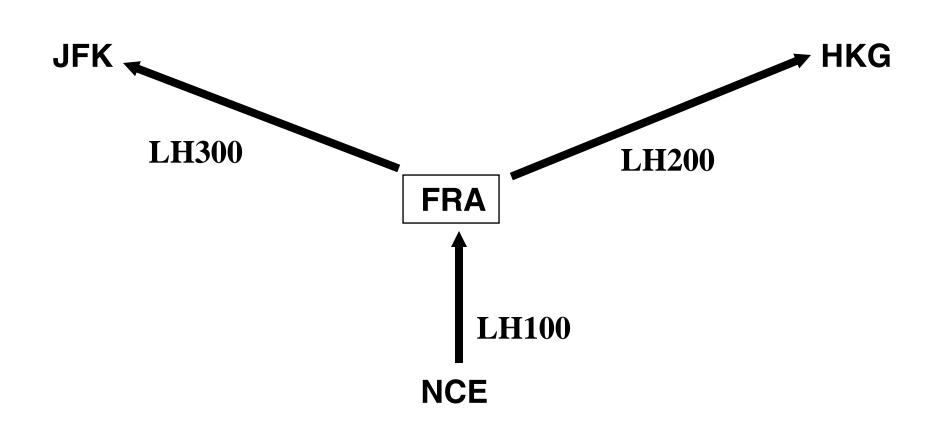


Network Revenue Management: O&D Control Dr. Peter Belobaba

Istanbul Technical University Air Transportation Management

M.Sc. Program

Network, Fleet and Schedule Strategic Planning Module 15 : 13 March 2014


Background: Fare Class Control

- Majority of world airlines still practice "fare class control":
 - High-yield ("full") fare types in top booking classes
 - Lower yield ("discount") fares in lower classes
 - Designed to maximize yields, not total revenues
- Seats for connecting itineraries must be available in same class across all flight legs:
 - Airline cannot distinguish among itineraries
 - "Bottleneck" legs can block long haul passengers

Yield-Based Fare Class Structure (Example)

BOOKING	FARE PRODUCT TYPE
CLASS	
Y	Unrestricted "full" fares
В	Discounted one-way fares
M	7-day advance purchase
	round-trip excursion fares
Q	14-day advance purchase
	round-trip excursion fares
V	21-day advance purchase or
	special promotional fares

O-D Control Example: Hub Network

Leg-Based Class Availability

FLIGHT LEG INVENTORIES

LH 100 CLASS	NCE-FRA AVAILABLE	LH 200 CLASS	FRA-HKG AVAILABLE	LH 300 CLASS	FRA-JFK AVAILABLE
Y B M Q V	32 18 0 0 0	Y B M Q V	142 118 97 66 32	Y B M Q V	51 39 28 17 0

ITINERARY/FARE AVAILABILITY

NCE/FRA	LH 100	Y	В			
NCE/HKG	LH 100 LH 200	Y Y	-	Μ	Q	V
NCE/JFK	LH 100 LH 300	Y Y	B B	М	Q	

Leg Class Control Does Not Maximize **Total Network Revenues**

(A) SEAT AVAILABILITY: SHORT HAUL BLOCKS LONG HAUL

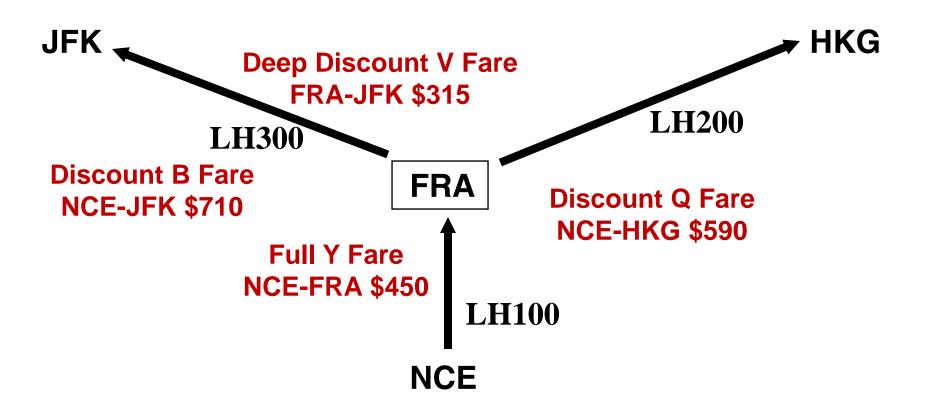
NCE/FRA	
CLASS	FARE (OW)
Y	\$450
В	\$380
М	\$225
Q	\$165
V	\$135

NCE/HKG	(via FRA)		
CLASS	FARE (OW		
Y	\$1415		
В	\$975		
М	\$770		
Q	\$590		
V	\$499		

NCE/JFK	(via FRA)				
CLASS	FARE (OW)				
Y	\$950				
В	\$710				
М	\$550				
Q	\$425				
V	\$325				

(B) SEAT AVAILABILITY:

LOCAL VS. CONNECTING PASSENGERS


NCE/FRA	
CLASS	FARE (OW)
Y	\$450
В	\$380
М	\$225
Q	\$165
V	\$135

FRA/JFK	
CLASS	FARE (OW)
Y	\$920
В	\$670
М	\$515
Q	\$385
V	\$315

NCE/JFK	(via FRA)
CLASS	FARE (OW)
Y	\$950
В	\$710
М	\$550
Q	\$425
V	\$325

O-D Control Optimization Quiz

QUESTION: With 1 seat available on each flight leg, which of these 4 O-D requests should we accept to maximize network revenue?

- The capability to respond to different O-D requests with different seat availability.
- Can be implemented in a variety of ways:
 - Revenue value buckets ("greedy approach")
 - EMSR heuristic bid price (HBP)
 - Displacement adjusted virtual nesting (DAVN)
 - Network probabilistic bid price control (ProBP)
- All of the above can increase revenues, but each one has implementation trade-offs.

Revenue Value Bucket Concept

- Fixed relationship between fare type and booking class is abandoned:
 - Booking classes ("buckets") defined according to revenue value, regardless of fare restrictions
 - Each itinerary/fare type (i.e.., "ODIF") assigned to a revenue value bucket on each flight leg
 - ODIF seat availability depends on booking limits of value buckets

• **Development of Virtual Inventory Classes:**

- Substantial cost of new inventory structure and mapping functions to virtual classes
- CRS seamless availability links are essential

Virtual Class Mapping by ODF Revenue Value

FARE VALUES BY ITINERARY

NCE/FRA		NCE/HKG	(via FRA)	NCE/JFK	(via FRA)
CLASS	FARE (OW)	CLASS	FARE (OW)	CLASS	FARE (OW
Y	\$450	Y	\$1415	Y	\$950
В	\$380	В	\$975	В	\$710
М	\$225	M	\$770	М	\$550
Q	\$165	Q	\$590	Q	\$425
V	\$135	V	\$499	V	\$325

MAPPING OF ODFS ON NCE/FRA LEG TO VIRTUAL VALUE CLASSES

VIRTUAL	REVENUE	MAPPING OF	
CLASS	RANGE	O-D MARKETS	S/CLASSES
1	1200 +	Y NCEHKG	
2	900-1199	B NCEHKG	Y NCEJFK
3	750-899	M NCEHKG	
4	600-749	B NCEJFK	
5	500-599	Q NCEHKG	M NCEJFK
6	430-499	V NCEHKG	Y NCEFRA
7	340-429	B NCEFRA	Q NCEJFK
8	200-339	V NCEJFK	M NCEFRA
9	150-199	Q NCEFRA	
10	0 - 149	V NCEFRA	

Value Buckets with Displacement

- Contribution of an ODF to network revenue on a leg is less than or equal to its total fare:
 - Connecting passengers can displace revenue on down-line (or up-line) legs
- Given estimated down-line displacement, ODFs are mapped based on <u>network</u> value:
 - Network value on Leg 1 = Total fare minus sum of down-line leg displacement costs
 - Under high demand, availability for connecting passengers is reduced, locals get more seats

• Revision of displacement costs is an issue:

 Frequent revisions capture demand changes, but ODF remapping can disrupt bucket forecasts

Virtual Class Mapping with Displacement

FARE VALUES BY ITINERARY

NCE/FRA		1	ICE/HKG	(via FRA)	7	NCE/JFK	(via FRA)
CLASS	FARE (OW)	C	CLASS	FARE (OW)]	CLASS	FARE (OW)
Y	\$450		Y	\$1415		Y	\$950
В	\$380		В	\$975		В	\$710
М	\$225		Μ	\$770		M	\$550
Q	\$165		Q	\$590		Q	\$425
V	\$135		V	\$499		V	\$325

MAPPING OF ODFs ON NCE/FRA LEG TO VIRTUAL VALUE CLASSES

VIRTUAL	REVENUE	MAPPING OF		
CLASS	RANGE	O-D MARKETS	S/CLASSES	
1	1200 +	Y NCEHKG		
2	900-1199	B NCEHKG	Y NCEJFK	
3	750-899	M NCEHKG		
4	600-749	B NCEJFK		
5	500-599	Q NCEHKG	M NCEJFK	Displacement
6	430-499	V NCEHKG	Y NCEFRA	Adjustment
7	340-429	B NCEFRA	Q NCEJFK	
8	200-339	V NCEJFK	M NCEFRA	
9	150-199	Q NCEFRA		
10	0 - 149	V NCEFRA		

Alternative Mechanism: Bid Price

• Under value bucket control, accept ODF if its network value falls into an available bucket:

Network Value > Value of Last Seat on Leg; or Fare - Displacement > Value of Last Seat

• Same decision rule can be expressed as:

Fare > Value of Last Seat + Displacement, or Fare > Minimum Acceptable "Bid Price" for ODF

• Much simpler inventory control mechanism than virtual buckets:

- Simply need to store bid price value for each leg
- Evaluate ODF fare vs. itinerary bid price at time of request
- Must revise bid prices frequently to prevent too many bookings of ODFs at current bid price

Example: Bid Price Control

A-----D

• Given leg bid prices

A-B: \$35 B-C: \$240 C-D: \$160

• Availability for O-D requests B-C:

	Bid Price = \$240	Available?
Υ	\$440	Yes
Μ	\$315	Yes
В	\$223	No
Q	\$177	No

Example: Bid Price Control

A-B:	\$35	B-C:	\$240	C-D:	\$160

A-C	Bid Price = \$275	Available?
Υ	\$519	Yes
Μ	\$374	Yes
В	\$292	Yes
Q	\$201	No

<u>A-D</u>	Bid Price = \$435	Available?
Y	\$582	Yes
Μ	\$399	No
В	\$322	No
Q	\$249	No

- How to determine network value of each ODF for O-D control purposes?
 - Leg-based EMSR estimates of displacement
 - Network optimization techniques to calculate displacement cost on each flight leg

• Estimates of displacement costs and bid prices can be derived using either approach:

- Most O-D RM software vendors claim "network optimal" solutions possible with their product
- Most airlines lack detailed data and face practical constraints in using network optimization models
- Revenue gain and robustness, not optimality, are most critical questions in practice

Network Optimization Methods

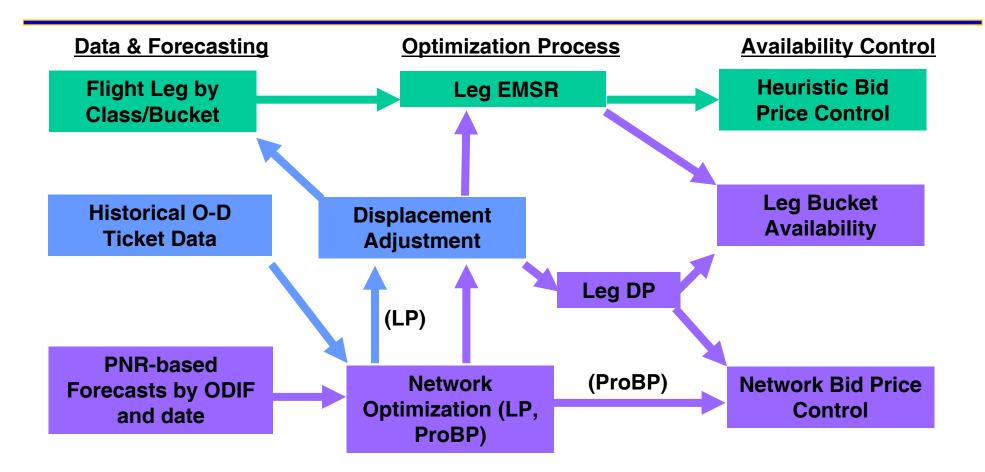
- Network optimization mathematics needed for both bid price and value bucket controls.
- Several optimization methods to consider:
 - Deterministic Linear Programming
 - Dynamic Programming
 - Nested Probabilistic Convergence Algorithm (Bratu, MIT)

• Simulated revenue gains are quite similar:

 ODF database, forecast accuracy and robustness under realistic conditions make a bigger difference

Leg-Based Heuristic Approaches

- Several large airlines have implemented approximation models of network effects:
 - Estimates of displacement costs and/or bid prices based on leg/bucket EMSR calculations
 - Use existing inventory structure, databases, and RM system capabilities
 - Compatible with RM analyst work routines
- Low-risk approach to O-D revenue gains, as an intermediate step to network optimization

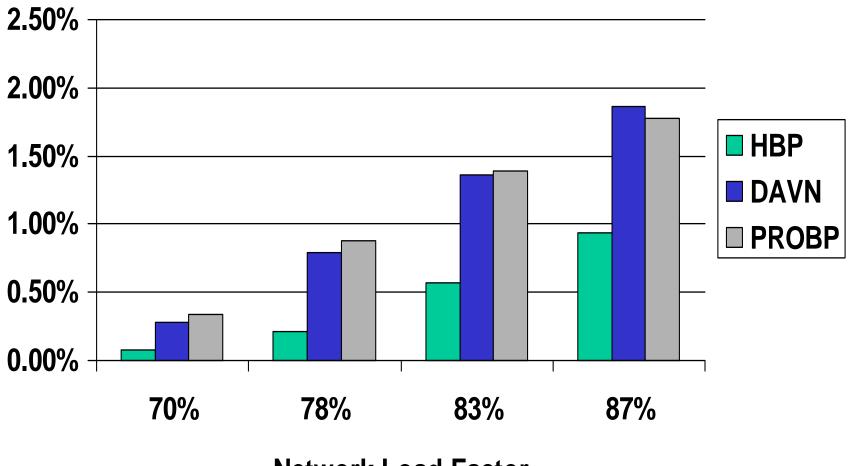

O-D Control System Components

- Much more than an optimization model:
 - Database Requirements: Leg/bucket vs. ODF.
 - <u>Forecasting Models</u>: Level of detail to match data; detruncation and estimation methods.
 - <u>Optimization Model</u>: Leg-based or network tools; deterministic vs. probabilistic; dynamic programs
 - <u>Control Mechanism</u>: Booking classes vs. value buckets vs. bid price control.
- Many effective combinations are possible:
 - Revenue gain, not optimality, is the critical issue.

O-D Control System Alternatives

O-D Control System	Data and Forecasts	Optimization Model	Control Mechanism
Rev. Value Buckets	Leg/bucket	Leg EMSR	Leg/bucket Limits
Heuristic Bid Price	Leg/bucket	Leg EMSR	Bid Price for Connex only
Disp. Adjusted Virtual Nesting	ODF	Network + Leg EMSR	Leg/bucket Limits
Probabilistic Network Bid Price	ODF	Network	O-D Bid Prices

Overview of O-D System Alternatives


Potential for O-D Control

- Simulations show potential O-D revenue gain:
 - As much as 1-2% additional gain over leg/class control under ideal simulation conditions

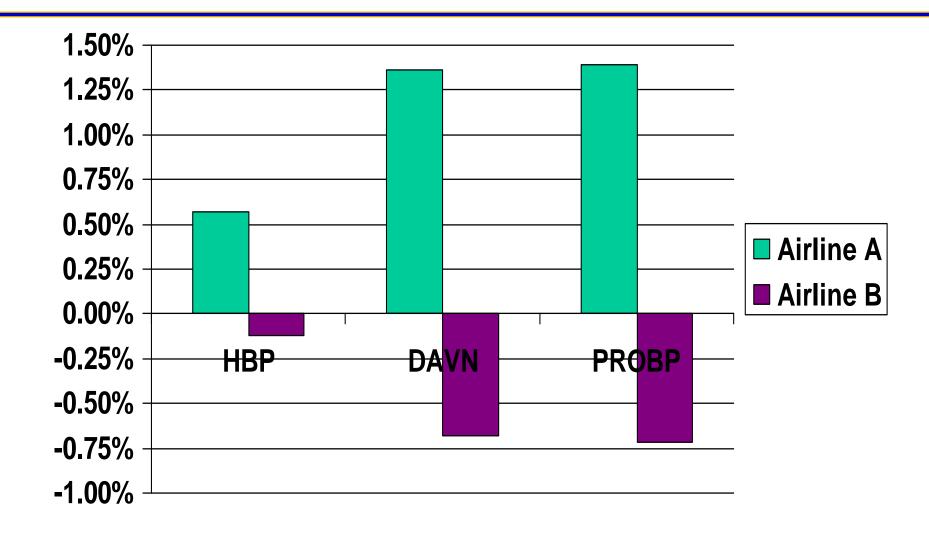
Network characteristics affect O-D benefits:

- Substantial connecting traffic required
- High demand factors on at least some feeder legs
- Greater benefits with greater demand variability
- CRS seamless availability links essential:
 - Different responses to different ODF requests

O-D Revenue Gain Comparison Airline A, O-D Control vs. Leg/Class RM

Network Load Factor

Additional Benefits of O-D Control


- Simulation research and actual airline experience clearly demonstrate revenue gains of O-D control
 - Return on investment huge; payback period short
 - Even 1% in additional revenue goes directly to bottom line
- O-D control provides strategic and competitive benefits beyond network revenue gains
 - Real possibility of revenue loss without O-D control
 - Improved protection against low-fare competitors
 - Enhanced capabilities for e-commerce and distribution
 - Ability to better coordinate RM with alliance partners

Competitive Impacts of O-D Methods

- Implementation of O-D control can have negative revenue impacts on competitor:
 - Continued use of basic FCYM by Airline B against O-D methods used by Airline A results in <u>revenue losses</u> for B
 - Not strictly a zero-sum game, as revenue gains of Airline A exceed revenue losses of Airline B
 - Other PODS simulation results show both airlines can benefit from using more sophisticated O-D control
- Failure to implement network RM (O-D control) can actually lead to revenue losses against competitor!

Competitive Impacts of O-D Control

Network ALF=83%, Airline B with Basic YM

Response to Low-Fare Competition

- Under basic leg/fare class RM, no control over different O-D markets booking in each class
 - With low-fare competitor, matching fares requires assignment to specific fare class
 - Fare class shared by all O-D itineraries using same flight leg and supply of seats
- With O-D control, bookings are limited by network revenue value, not fare type or restrictions
 - Low matching fares will still be available on empty flights
 - But will not displace higher revenue network passengers

Changing Distribution Channels

- O-D control also allows for improved control of bookings by distribution channel
 - Differential valuation of origin-destination-fare requests from a growing variety of alternative distribution options
 - Each new distribution channel represents an opportunity to increase revenues, but also a major risk of revenue dilution
 - Different costs and net revenue values to the airline

• In e-commerce, RM fundamentals are unchanged

- Forecast and protect seats for high revenue ODF requests
- Use O-D control to accept bookings only from channels and points of sale that will increase total network revenues

- O-D control is the 4th generation of RM:
 - Data collection, forecasting, optimization and control by origindestination-fare type as well as distribution channel
- Not just a revenue enhancement tool, a strategic and competitive necessity for airlines:
 - Incremental network revenue gains of 1-2% over basic RM
 - Essential to protect against revenue loss to competitors
 - Increased control of valuable inventory in the face of pricing pressures, new distribution channels, and strategic alliances